This is shaping up to be the busiest month in the SSD frontier for ages. Intel released its new flagship SSD 730 series just a couple of weeks ago and there are at least two more releases coming in the next few weeks...but today it's Crucial's turn to up the ante.

Unlike many OEMs, Crucial has more or less had only one active series in its SSD portfolio at a time. A few years ago this approach made sense because the SSD market as a whole mainly focused on enthusiasts and there was no real benefit to a tiered lineup. As the market has matured and prices have dropped over time, we are now in a situation similar to other components: there is the high volume mainstream market where price is the key and the higher margin enthusiast/professional market where performance and features matter. Covering both of these markets with a single product is hard because in order to compete in price, it's usually necessary to use lower quality parts, which in turn affects performance and features.

With the M500 Crucial was mainly targeting the mainstream market. The performance was mostly better than in the m4 days but only mediocre compared to other SSDs in the market. The introduction of the likes of the SanDisk Extreme II, Seagate SSD 600, and OCZ Vector 150 has upped the ante even more in the enthusiast segment and it has become clear that the M500 has no place there. To stay competitive in all product areas, Crucial is now launching the big brother to their M500: the M550.

EDIT: Just to clarify, the M500 will continue to be available and the M550 is merely a higher performing option at slightly higher price.

With 64Gbit NAND, 240/256GB was usually the sweet spot in terms of price and performance. That combination offered enough NAND die to saturate the SATA 6Gbps as well as the controller's/firmware's potential, but with the M500 this was no longer the case thanks to the usage of 128Gbit NAND. With a die that was twice the capacity, you only needed half the dies to build a 240/256GB SSD. As NAND parallelism is a major source of SSD performance, this meant a decrease in performance at 240/256GB and you would now have to go to 480/512GB to get the same level of performance that 240/256GB offered with 64Gbit NAND.

The use of 128Gbit NAND was one of the main reasons for the M500's poor performance, and with others staying with 64Gbit NAND, that backfired on Crucial in terms of performance (more on this later). Since it's not possible to magically decrease program times or add parallelism, Crucial decided to bring back the 64Gbit NAND in the lower capacity M550s. Here's how the new and old models compare:

Crucial M550 vs Crucial M500
  M550 M500
Controller Marvell 88SS9189 Marvell 88SS9187
NAND Micron 64/128Gbit 20nm MLC Micron 128Gbit 20nm MLC
Capacity 128GB 256GB 512GB 1TB 120GB 240GB 480GB 960GB
Sequential Read 550MB/s 500MB/s
Sequential Write 350MB/s 500MB/s 130MB/s 250MB/s 400MB/s
4KB Random Read 90K IOPS 95K IOPS 62K IOPS 72K IOPS 80K IOPS
4KB Random Write 75K IOPS 80K IOPS 85K IOPS 35K IOPS 60K IOPS 80K IOPS
Endurance 72TB (~66GB/day) 72TB (~66GB/day)
Warranty Three years Three years

The 128GB and 256GB models are now equipped with 64Gbit per die NAND while 512GB and 1TB models use the same 128Gbit NAND as in the M500. What this means is that the 128GB and 256GB models are much more competitive in performance because the die count is twice that of the same capacity M500 drives. You get roughly the same performance with both 256GB and 512GB models (unlike the nearly 50% drop in write performance like in the M500) and the 128GB actually beats the 240GB M500 in all metrics. There is obviously some firmware tweaking involved as well and the bigger capacities get a performance bump too, although it's much more moderate compared to the smaller capacities.

Another difference is the controller. Compared to the NAND, this isn't as substantial a change because the Marvell 9189 is more of an updated version of the 9187 and the only major upgrades are support for LPDDR and better optimization for DevSleep, both of which help with power consumption and can hence extend the battery life.

Crucial M550 Specifications
Capacity 128GB 256GB 512GB 1TB
Controller Marvell 88SS9189
NAND Micron 64Gb 20nm MLC Micron 128Gb 20nm MLC
Cache (LPDDR2-1066) 512MB 512MB 512MB 1GB
Sequential Read 550MB/s 550MB/s 550MB/s 550MB/s
Sequential Write 350MB/s 500MB/s 500MB/s 500MB/s
4KB Random Read 90K IOPS 90K IOPS 95K IOPS 95K IOPS
4KB Random Write 75K IOPS 80K IOPS 85K IOPS 85K IOPS

Similar to the earlier drives, Crucial continues to be Micron's household brand whereas OEM drives will be sold under Micron's name. It's just a matter of branding and there are no differences between the retail and OEM drives other than an additional 64GB model for OEMs. 

Crucial switches back to binary capacities in the M550 and with the 1TB model you actually get the full 1024GB of space (though Crucial lists it as 1TB for marketing reasons, and there's still 1024GiB of actual NAND). The reason behind this isn't a reduction in over-provisioning but merely a more optimized use of RAIN (Redundant Array of Independent NAND).

RAIN is similar to SandForce's RAISE and the idea is that you take some NAND space and dedicate that to parity. Almost every manufacturer is doing this at some level nowadays since the NAND error and failure rates are constantly increasing as we move to smaller lithographies. When the M500 came out the 128Gbit NAND was very new and Crucial/Micron wanted to play it safe and dedicated quite a bit of NAND for RAIN to make sure the brand new NAND wouldn't cause any reliability issues down the road. In a year a lot happens in terms of maturity of a process and Crucial/Micron are now confident that they can offer the same level of endurance and reliability with less parity. The parity ratio is 127:1, meaning that for every 127 bits there is one parity bit. This roughly translates to 1GiB of NAND reserved for parity in the 128GB M550 and 2GiB, 4GiB and 8GiB for the higher capacities.

Feature wise the M550 adopts everything from the M500. There is TCG Opal 2.0 and IEEE-1667 support, which are the requirements for Microsoft's eDrive encryption. Along with that is full power loss protection thanks to capacitors that provide the necessary power to complete in-progress NAND writes in case of power loss.

Update: Micron just told us that in addition to the capacitors there is some NAND-level technology that makes the M550 even more robust against power losses. We don't have the details yet but you'll be the first to know once we got them.

NAND Configurations
Raw NAND Capacity 128GiB 256GiB 512GiB 1024GiB
RAIN Allocation ~1GiB ~2GiB ~4GiB ~8GiB
Over-Provisioning 6.1% 6.1% 6.1% 6.1%
Usable Capacity 119.2GiB 238.4GiB 476.8GiB 953.7GiB
# of NAND Packages 16 16 16 16
# of NAND Die per Package 1 x 8GiB 2 x 8GiB 2 x 16GiB 4 x 16GiB

 

Test System

CPU Intel Core i5-2500K running at 3.3GHz
(Turbo and EIST enabled)
Motherboard AsRock Z68 Pro3
Chipset Intel Z68
Chipset Drivers Intel 9.1.1.1015 + Intel RST 10.2
Memory G.Skill RipjawsX DDR3-1600 4 x 8GB (9-9-9-24)
Video Card Palit GeForce GTX 770 JetStream 2GB GDDR5
(1150MHz core clock; 3505MHz GDDR5 effective)
Video Drivers NVIDIA GeForce 332.21 WHQL
Desktop Resolution 1920 x 1080
OS Windows 7 x64

Thanks to G.Skill for the RipjawsX 32GB DDR3 DRAM kit

NAND Lesson: Why Die Capacity Matters
Comments Locked

100 Comments

View All Comments

  • hojnikb - Thursday, March 20, 2014 - link

    Thats only taking flash endurance into account. That doesn't mean controller wont crap on you years sooner.
  • q.epsilon.p - Sunday, April 6, 2014 - link

    Dude given that the 500M 480 and 550M 512 models are so different in price and so similar in performance I would go for the 480BG.

    Although the 500m 240 and 500m 120 perform much slower, but they were always slower compared to the competition so you had that information available before buying them. But considering its write speed where they really suffered I wouldn't have been much concerned.

    and tbh you are not really going to notice the difference without benchmarks and the price difference is big enough to make it worth it.
  • Homeles - Tuesday, March 18, 2014 - link

    The M500 being phased out doesn't make sense. Technically the M500 is more advanced with its 128Gb dies, despite its slower performance.
  • elerick - Tuesday, March 18, 2014 - link

    At first glance I tend to agree that this is a middle of the pack SSD. I however do seriously consider the power loss protection worth its weight in gold. I have a Samsung 830 and these days I value reliability above "good enough" performance. Once PCI-E SSD starts producing consumer priced drives I'll go that route.
  • Death666Angel - Friday, March 21, 2014 - link

    Can we boot off PCIe SSDs yet (consumer grade Windows)?
  • hojnikb - Tuesday, March 18, 2014 - link

    I really expected better consistency, but well... Maybe next time (or next firmware update ?).

    Although its nice to see they were able to boost write speed so much. Looks like smaller dies do pay off.

    PS:
    Anyone knows what native write accelaration stands for ? At first i though it was something like turbowrite (not knowing they will use 64Gbit flash) but this does not appear to be the case ...
  • Kristian Vättö - Tuesday, March 18, 2014 - link

    Crucial specifically said they don't have an SLC or DRAM buffer and the write performance should be the same across all LBAs (the HD Tach graph shows that this is true). To me it sounds like the Native Write Acceleration is just a marketing trick aimed at Samsung and others who use buffers to boost performance.
  • hojnikb - Tuesday, March 18, 2014 - link

    Yeah it appears so.
    It really nice to see, that they aren't using any nasty tricks like turbowrite, just to inflate numbers.
  • jospoortvliet - Thursday, March 20, 2014 - link

    I think turbowrite is an awesome idea - it helps exactly where consumers need it... Short write bursts. Sure, not that interesting for pro use perhaps but isn't that the point of consumer products?
  • hojnikb - Thursday, March 20, 2014 - link

    Awsome idea for marketing department maybe. Considering that your avarage joe only looks at the sequential speeds, it makes EVO compared to lets say m500 a way way better drive, even though in reality thats not the case.
    Its not like turbowrite is bad or anything (i think it a great solution for "slow" write devices such as TLC) but i just hate that they are fooling people (they could easily market both normal speeds and turbo speeds)

Log in

Don't have an account? Sign up now