Instruction Changes

Both of the processor cores inside Alder Lake are brand new – they build on the previous generation Core and Atom designs in multiple ways. As always, Intel gives us a high level overview of the microarchitecture changes, as we’ve written in an article from Architecture Day:

At the highest level, the P-core supports a 6-wide decode (up from 4), and has split the execution ports to allow for more operations to execute at once, enabling higher IPC and ILP from workflow that can take advantage. Usually a wider decode consumes a lot more power, but Intel says that its micro-op cache (now 4K) and front-end are improved enough that the decode engine spends 80% of its time power gated.

For the E-core, similarly it also has a 6-wide decode, although split to 2x3-wide. It has a 17 execution ports, buffered by double the load/store support of the previous generation Atom core. Beyond this, Gracemont is the first Atom core to support AVX2 instructions.

As part of our analysis into new microarchitectures, we also do an instruction sweep to see what other benefits have been added. The following is literally a raw list of changes, which we are still in the process of going through. Please forgive the raw data. Big thanks to our industry friends who help with this analysis.

Any of the following that is listed as A|B means A in latency (in clocks) and B in reciprocal throughput (1/instructions).

 

P-core: Golden Cove vs Cypress Cove

Microarchitecture Changes:

  • 6-wide decoder with 32b window: it means code size much less important, e.g. 3 MOV imm64 / clks;(last similar 50% jump was Pentium -> Pentium Pro in 1995, Conroe in 2006 was just 3->4 jump)
  • Triple load: (almost) universal
    • every GPR, SSE, VEX, EVEX load gains (only MMX load unsupported)
    • BROADCAST*, GATHER*, PREFETCH* also gains
  • Decoupled double FADD units
    • every single and double SIMD VADD/VSUB (and AVX VADDSUB* and VHADD*/VHSUB*) has latency gains
    • Another ADD/SUB means 4->2 clks
    • Another MUL means 4->3 clks
    • AVX512 support: 512b ADD/SUB rec. throughput 0.5, as in server!
    • exception: half precision ADD/SUB handled by FMAs
    • exception: x87 FADD remained 3 clks
  • Some form of GPR (general purpose register) immediate additions treated as NOPs (removed at the "allocate/rename/move ellimination/zeroing idioms" step)
    • LEA r64, [r64+imm8]
    • ADD r64, imm8
    • ADD r64, imm32
    • INC r64
    • Is this just for 64b addition GPRs?
  • eliminated instructions:
    • MOV r32/r64
    • (V)MOV(A/U)(PS/PD/DQ) xmm, ymm
    • 0-5 0x66 NOP
    • LNOP3-7
    • CLC/STC
  • zeroing idioms:
    • (V)XORPS/PD, (V)PXOR xmm, ymm
    • (V)PSUB(U)B/W/D/Q xmm
    • (V)PCMPGTB/W/D/Q xmm
    • (V)PXOR xmm

Faster GPR instructions (vs Cypress Cove):

  • LOCK latency 20->18 clks
  • LEA with scale throughput 2->3/clk
  • (I)MUL r8 latency 4->3 clks
  • LAHF latency 3->1 clks
  • CMPS* latency 5->4 clks
  • REP CMPSB 1->3.7 Bytes/clock
  • REP SCASB 0.5->1.85 Bytes/clock
  • REP MOVS* 115->122 Bytes/clock
  • CMPXVHG16B 20|20 -> 16|14
  • PREFETCH* throughput 1->3/clk
  • ANDN/BLSI/BLSMSK/BLSR throughput 2->3/clock
  • SHA1RNDS4 latency 6->4
  • SHA1MSG2 throughput 0.2->0.25/clock
  • SHA256MSG2 11|5->6|2
  • ADC/SBB (r/e)ax 2|2 -> 1|1

Faster SIMD instructions (vs Cypress Cove):

  • *FADD xmm/ymm latency 4->3 clks (after MUL)
  • *FADD xmm/ymm latency 4->2 clks(after ADD)
  • * means (V)(ADD/SUB/ADDSUB/HADD/HSUB)(PS/PD) affected
  • VADD/SUB/PS/PD zmm  4|1->3.3|0.5
  • CLMUL xmm  6|1->3|1
  • CLMUL ymm, zmm 8|2->3|1
  • VPGATHERDQ xmm, [xm32], xmm 22|1.67->20|1.5 clks
  • VPGATHERDD ymm, [ym32], ymm throughput 0.2 -> 0.33/clock
  • VPGATHERQQ ymm, [ym64], ymm throughput 0.33 -> 0.50/clock

Regressions, Slower instructions (vs Cypress Cove):

  • Store-to-Load-Forward 128b 5->7, 256b 6->7 clocks
  • PAUSE latency 140->160 clocks
  • LEA with scale latency 2->3 clocks
  • (I)DIV r8 latency 15->17 clocks
  • FXCH throughput 2->1/clock
  • LFENCE latency 6->12 clocks
  • VBLENDV(B/PS/PD) xmm, ymm 2->3 clocks
  • (V)AESKEYGEN latency 12->13 clocks
  • VCVTPS2PH/PH2PS latency 5->6 clocks
  • BZHI throughput 2->1/clock
  • VPGATHERDD ymm, [ym32], ymm latency 22->24 clocks
  • VPGATHERQQ ymm, [ym64], ymm latency 21->23 clocks

 

E-core: Gracemont vs Tremont

Microarchitecture Changes:

  • Dual 128b store port (works with every GPR, PUSH, MMX, SSE, AVX, non-temporal m32, m64, m128)
  • Zen2-like memory renaming with GPRs
  • New zeroing idioms
    • SUB r32, r32
    • SUB r64, r64
    • CDQ, CQO
    • (V)PSUBB/W/D/Q/SB/SW/USB/USW
    • (V)PCMPGTB/W/D/Q
  • New ones idiom: (V)PCMPEQB/W/D/Q
  • MOV elimination: MOV; MOVZX; MOVSX r32, r64
  • NOP elimination: NOP, 1-4 0x66 NOP throughput 3->5/clock, LNOP 3, LNOP 4, LNOP 5

Faster GPR instructions (vs Tremont)

  • PAUSE latency 158->62 clocks
  • MOVSX; SHL/R r, 1; SHL/R r,imm8  tp 1->0.25
  • ADD;SUB; CMP; AND; OR; XOR; NEG; NOT; TEST; MOVZX; BSSWAP; LEA [r+r]; LEA [r+disp8/32] throughput 3->4 per clock
  • CMOV* throughput 1->2 per clock
  • RCR r, 1 10|10 -> 2|2
  • RCR/RCL r, imm/cl 13|13->11|11
  • SHLD/SHRD r1_32, r1_32, imm8 2|2 -> 2|0.5
  • MOVBE latency 1->0.5 clocks
  • (I)MUL r32 3|1 -> 3|0.5
  • (I)MUL r64 5|2 -> 5|0.5
  • REP STOSB/STOSW/STOSD/STOSQ 15/8/12/11 byte/clock -> 15/15/15/15 bytes/clock

Faster SIMD instructions (vs Tremont)

  • A lot of xmm SIMD throughput is 4/clock instead of theoretical maximum(?) of 3/clock, not sure how this is possible
  • MASKMOVQ throughput 1 per 104 clocks -> 1 per clock
  • PADDB/W/D; PSUBB/W/D PAVGB/PAVGW 1|0.5 -> 1|.33
  • PADDQ/PSUBQ/PCMPEQQ mm, xmm: 2|1 -> 1|.33
  • PShift (x)mm, (x)mm 2|1 -> 1|.33
  • PMUL*, PSADBW mm, xmm 4|1 -> 3|1
  • ADD/SUB/CMP/MAX/MINPS/PD 3|1 -> 3|0.5
  • MULPS/PD 4|1 -> 4|0.5
  • CVT*, ROUND xmm, xmm 4|1 -> 3|1
  • BLENDV* xmm, xmm 3|2 -> 3|0.88
  • AES, GF2P8AFFINEQB, GF2P8AFFINEINVQB xmm 4|1 -> 3|1
  • SHA256RNDS2 5|2 -> 4|1
  • PHADD/PHSUB* 6|6 -> 5|5

Regressions, Slower (vs Tremont):

  • m8, m16 load latency 4->5 clocks
  • ADD/MOVBE load latency 4->5 clocks
  • LOCK ADD 16|16->18|18
  • XCHG mem 17|17->18|18
  • (I)DIV +1 clock
  • DPPS 10|1.5 -> 18|6
  • DPPD 6|1 -> 10|3.5
  • FSIN/FCOS +12% slower

 

Power: P-Core vs E-Core, Win10 vs Win11 CPU Tests: Core-to-Core and Cache Latency, DDR4 vs DDR5 MLP
Comments Locked

474 Comments

View All Comments

  • JayNor - Saturday, November 6, 2021 - link

    "In the aggregate scores, an E-core is roughly 54-64% of a P-core, however this percentage can go as high as 65-73%."

    It isn't clear what you mean here. A P-core second thread on the same core would be expected to add around 30%.

    A more understandable test would something like Intel presented of Gracemont 4C4T vs Skylake 2C4T, although it would also be interesting to see performance and power of 8C8T vs 2C4T of Golden Cove, since they reportedly occupy a similar layout space.
  • SystemsBuilder - Saturday, November 6, 2021 - link

    Really happy to see AVX-512 is available with a simple BIOS switch!
    This looks to me like how AVX-512 should have been implemented in Sky lake, Cascade lake and Rocket lake and now they finally are getting it right:
    Alder lake seams to have:
    - both AVX-512 ports enabled (port 0 and 5) !
    - able to run at negative offset = 0 for both AVX2 and AVX-512!
    - AVX-512 power consumption seams too be in line with AVX2!
    Excellent in other words! Since the silicon is there, if they can get the scheduler to manage heterogeneous (P/E) cores there is now no down side with enabling AVX-512.

    -
  • Oxford Guy - Saturday, November 6, 2021 - link

    I guess you missed the sentence about how the MSI boards don’t have the switch, the sentence about how it’s actually not supposed to be there, and the sentence about how it could be eliminated in the future.

    Additionally, what high-end motherboards offer in BIOS may be more than what is offered in more affordable models. Vendors might restrict this unofficial ‘support’ to top models.

    The entire situation is completely incompetent. It’s patently absurd.
  • Oxford Guy - Saturday, November 6, 2021 - link

    It raises a very serious question about Gelsinger’s leadership.

    All the hype about putting an engineer in charge and we have this utter inanity as the result.
  • mode_13h - Saturday, November 6, 2021 - link

    > It raises a very serious question about Gelsinger’s leadership.

    I'm sure this decision never crossed his desk. It would be made probably 2+ levels below him, in the management hierarchy.

    Moreover, he's been in charge for only about 8 months or so. Do you have any idea how long it takes to steer a big ship like Intel? This decision wasn't made yesterday. It would require OS support, which means they'd have had to get buy-in from Microsoft for it, many months ago.

    And that's just if you're talking about the decision not to allow partial AVX-512 enabling. The decision to exclude it from Gracemont was made many years ago. Its exclusion was possibly considered a necessity for Gracemont's success, due to the perf/area -> perf/$ impact.
  • Oxford Guy - Saturday, November 6, 2021 - link

    If Gelsinger wasn’t aware of the lie about fusing off and all of the other critically-important aspects involved he’s either a charlatan or Intel is structurally incompetent.
  • Wrs - Saturday, November 6, 2021 - link

    Why all the fuss about a technically unsupported feature? The only consumer chips officially to have AVX-512 contain Rocket Lake cores. Not Zen 3, or 2, or Comet Lake, or Alder Lake. If you find your Alder Lake has hidden AVX-512 abilities, how's that any different from finding out you can enable 6 cores on your 4-core Celeron?
  • mode_13h - Saturday, November 6, 2021 - link

    > The only consumer chips officially to have AVX-512 contain Rocket Lake cores.

    Ice Lake and Tiger Lake do, but they're only in laptops, NUCs, and SFF PCs.
  • zodiacfml - Sunday, November 7, 2021 - link

    that guy is hating on Gelsinger.
  • Qasar - Sunday, November 7, 2021 - link

    that guy hates on everything

Log in

Don't have an account? Sign up now