AnandTech DAS Suite - Benchmarking for Performance Consistency

Our testing methodology for storage bridges / direct-attached storage units takes into consideration the usual use-case for such devices. The most common usage scenario is transfer of large amounts of photos and videos to and from the unit. Other usage scenarios include the use of the unit as a download or install location for games and importing files directly from it into a multimedia editing program such as Adobe Photoshop. Some users may even opt to boot an OS off an external storage device.

The AnandTech DAS Suite tackles the first use-case. The evaluation involves processing five different workloads:

  • AV: Multimedia content with audio and video files totalling 24.03 GB over 1263 files in 109 sub-folders
  • Home: Photos and document files totalling 18.86 GB over 7627 files in 382 sub-folders
  • BR: Blu-ray folder structure totalling 23.09 GB over 111 files in 10 sub-folders
  • ISOs: OS installation files (ISOs) totalling 28.61 GB over 4 files in one folder
  • Disk-to-Disk: Addition of 223.32 GB spread over 171 files in 29 sub-folders to the above four workloads (total of 317.91 GB over 9176 files in 535 sub-folders)

Except for the 'Disk-to-Disk' workload, each data set is first placed in a 29GB RAM drive, and a robocopy command is issue to transfer it to the external storage unit (formatted in exFAT for flash-based units like the SM2320 reference design we are evaluating here).

robocopy /NP /MIR /NFL /J /NDL /MT:32 $SRC_PATH $DEST_PATH

Upon completion of the transfer (write test), the contents from the unit are read back into the RAM drive (read test) after a 10 second idling interval. This process is repeated three times for each workload. Read and write speeds, as well as the time taken to complete each pass are recorded. Whenever possible, the temperature of the external storage device is recorded during the idling intervals. Bandwidth for each data set is computed as the average of all three passes.

The 'Disk-to-Disk' workload involves a similar process, but with one iteration only. The data is copied to the external unit from the CPU-attached NVMe drive, and then copied back to the internal drive. It does include more amount of continuous data transfer in a single direction, as data that doesn't fit in the RAM drive is also part of the workload set.

Audio and Video Read

The reference design comes out on top by a significant margin in all of the read workloads. However, writes are a challenge, particularly for workloads that exhaust the SLC cache (the disk-to-disk transfer graph above). Most of the write workloads see the SM2320 reference design in the middle of the pack, which is expected given the DRAM-less nature of the device. In the disk-to-disk write, the reference design fares worse than the 4TB QLC-based X6 purely because the 4TB Crucial X6 has around 8x the SLC cache of the SM2320 reference design.

For all practical purposes, the casual user will notice no difference between them in the course of normal usage, as workloads should fit in within the SLC cache of the drive (around 100GB, as we shall see later on in the review). Even in cases where the active working set is more than the SLC cache size, real-world workloads often given enough breathing space for the drive to regain some of the SLC cache. That said, power users may want to dig deeper to understand the limits of each device. To address this concern, we also instrumented our evaluation scheme for determining performance consistency.

Performance Consistency

Aspects influencing the performance consistency include SLC caching and thermal throttling / firmware caps on access rates to avoid overheating. This is important for power users, as the last thing that they want to see when copying over 100s of GB of data is the transfer rate going down to USB 2.0 speeds.

In addition to tracking the instantaneous read and write speeds of the DAS when processing the AnandTech DAS Suite, the temperature of the drive was also recorded. In earlier reviews, we used to track the temperature all through. However, we have observed that SMART read-outs for the temperature in NVMe SSDs using USB 3.2 Gen 2 bridge chips end up negatively affecting the actual transfer rates. To avoid this problem, we have restricted ourselves to recording the temperature only during the idling intervals. The graphs below present the recorded data.

AnandTech DAS Suite - Performance Consistency
TOP: BOTTOM:

The first three sets of writes and reads correspond to the AV suite. A small gap (for the transfer of the video suite from the internal SSD to the RAM drive) is followed by three sets for the Home suite. Another small RAM-drive transfer gap is followed by three sets for the Blu-ray folder. This is followed up with the large-sized ISO files set. Finally, we have the single disk-to-disk transfer set.

Workloads that are within the SLC cache exhibit good performance consistency. It is only the disk-to-disk set with more than 300GB of continuous data writes that pushes down the instantaneous bandwidth numbers to the 100MBps range. Temperatures are satisfactory, given that the reference design is a bare board with no product-level thermal solution in place. It is likely that a design like that of the Kingston XS2000 should be easily able to bring down the 86C peak to something a lot more comfortable for the flash and the controller.

Synthetic Benchmarks - ATTO and CrystalDiskMark PCMark 10 Storage Bench - Real-World Access Traces
POST A COMMENT

18 Comments

View All Comments

  • Bik - Thursday, September 16, 2021 - link

    these would be good to use in laptop with limited power budget Reply
  • meacupla - Thursday, September 16, 2021 - link

    It would be nice to see an NVMe SSD that has even more power efficiency than a P31, for sure. Reply
  • Samus - Friday, September 17, 2021 - link

    What I find amazing is how fast and power efficient this thing is for having a USB-C connector. Getting that performance out of that many conductors is just amazing. Reply
  • bernstein - Thursday, September 16, 2021 - link

    IMHO (re)using (old) m2 nvme/sata ssd's in a external case (usb-bridge) is in almost all cases the cheaper/more flexible solution. sure it's a tiny bit bigger, more-expensive & less power-efficient... but for single external drive these are almost always negelgible. Reply
  • meacupla - Thursday, September 16, 2021 - link

    IDK about that.
    This XS2000 only has 500GB, 1TB and 2TB models, and I would think most people will be upgrading TO that size, rather than upgrading FROM that size.
    When you add in the cost of an USB 3.2 Gen 2x2 external case, things end up not being cheap.

    I am looking at the prices from my local retailer, and the price for the 500GB and 1TB model XS2000 is, in fact, better than buying separately.
    For the 2TB model, buying separately is cheaper.
    For the 500GB and 1TB model, it's only cheaper if I opt for an NVMe enclosure that is not capable of USB3.2 Gen 2x2
    Reply
  • Drkrieger01 - Thursday, September 16, 2021 - link

    I imagine we'll start seeing the return of some decent ultra highs speed USB sticks with these controllers now available Reply
  • Wereweeb - Thursday, September 16, 2021 - link

    "The lack of any thermal solution (note that we are evaluating a bare PCB here) means that we can't make any comments on the recorded temperature." It's worrying that they sent you a bare PCB, instead of the product that costumers will buy, when they know y'all are likely to do the most throughout analysis of the device.

    I'd imagine that it's hard to fuck up with such an elegant and simple design, but you never know - Kingston is the one who managed to innovate in the creation of LED-fried NAND.
    Reply
  • DigitalFreak - Thursday, September 16, 2021 - link

    Do laptops outside of TigerLake even have USB 3.2 2x2 support? Let alone desktops. Reply
  • timecop1818 - Friday, September 17, 2021 - link

    I don't think even tiger lake has native USB 2x2 without adding a bridge chip Reply
  • DigitalFreak - Friday, September 17, 2021 - link

    I was thinking Thunderbolt 4 / USB 4 is backwards compatible with 2x2. Reply

Log in

Don't have an account? Sign up now